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Abstract
Among thirty four endophytic fungal strains screened for in vitro antagonism, the endophytic
fungus Cordyceps dipterigena was found to strongly inhibit mycelial growth of the plant
pathogenic fungus Gibberella fujikuroi. Two new depsidone metabolites, cordycepsidone A (1)
and cordycepsidone B (2), were isolated from the PDA culture extract of C. dipterigena and
identified as being responsible for the antifungal activity. Elucidation of their chemical structures
was carried out using 1D and 2D NMR spectroscopy in combination with IR and MS
spectroscopic data. Cordycepsidone A displayed strong and dose-dependent antifungal activity
against the plant pathogenic fungus Gibberella fujikuroi. The isolates were inactive in bioassays
for malaria (Plasmodium falciparum), leishmaniasis (Leishmania donovani), Chagas’s disease
(Trypanosoma cruzi), and cytotoxicity at 10 μg/mL. The compounds were also found to be
inactive against several bacterial strains at 50 μg/mL.
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The International Cooperative Biodiversity Group program in Panama (ICBG-Panama) has
been investigating cytotoxic, anti-parasitic and anti-microbial agents from various natural
sources such as plants,1 marine organisms,2 and more recently, endophytic fungi.3,4 From a
total of 3582 endophytic fungal extracts, a number of active materials have been identified
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in our cytotoxic or anti-parasitic drug screening. The endophytic strains were screened for
identification of antifungal metabolites using antagonism assay methods5 in which the
endophytic strains were grown together with a fast growing phytopathogen. Thirty-four
endophytic strains were screened against the well known phytopathogen Gibberella
fujikuroi. This phytopathogen devastates rice crops by causing ‘bakanae’ disease (from the
Japanese ‘foolish seedling’),6 a condition which results from over-production of the plant
growth hormone gibberellic acid.

Unfortunately, some higher yielding strains of rice in Asia, Africa and North America are
very susceptible to infection by this pathogen. After a series of antagonistic screens on
potato dextrose agar media of endophytic fungi, the most potent strain was found to be
Cordyceps dipterigena7 (strain F0307) with an inhibition zone diameter of 13 mm after
seven days. The crude extract from the fungus inhibited the phytopathgen at 20 μg in a disk
agar diffusion assay. On the basis of this activity the fungus was grown on a larger scale to
identify its active secondary metabolites. Herein, we describe the isolation8 and structural
elucidation of two new antifungal depsidone compounds, cordycepsidone A (1) and
cordycepsidone B (2), as the active metabolites from the extract. The new compounds were
also evaluated for their anti-parasitic, anti-bacterial and cytotoxic activities.

Compound 1 was obtained as a white amorphous powder, mp 197 °C. The molecular
formula C18H12O8 was determined by APCI-HR-TOFMS (m/z 357.0606 [M + H]+). The 1H
NMR spectrum of 1 showed a resonance at 10.5 for an aldehyde proton, one aromatic proton
at 6.85, one oxymethylene group at 5.27, and two aromatic methyl groups at 2.42 and 2.13.
The 13C NMR spectrum possessed 18 carbon signals with their number of attached protons
determined from a DEPT spectrum. These were present as two methyls [δC 11.3 and 21.7],
one methylene [δC 68.7], two methines [δC 118.1 and 193.5] and thirteen quaternary
carbons. Two long range correlations were observed by COSY between the methyl singlet at
2.42 and the aromatic proton and the methyl singlet at 2.13 and the oxymethylene protons.
These suggested that the further downshielded methyl group was ortho to the aromatic
proton whereas the second methyl group was ortho to the oxymethylene. HMBC
correlations observed from an aromatic proton at H 6.85 (H-8) to C-16 (δC 193.5), C-7 (δC
165.3), C-10 (δC 112.6), C-11 (δC 160.7), and C-17 (δC 21.7) allowed identification of a
substructure corresponding to aromatic ring A. The positions of the substituent groups about
ring A were confirmed by observing HMBC correlations from H 10.54 (H-16) and H 2.42
(H-17) to various carbon resonances. Subsequently, a second substructure corresponding to
aromatic ring C was identified by observing HMBC correlations from the oxymethylene at
5.27 (H-15) to C-1 (δC 168.6), C-2 (δC 109.6), C-3 (δC 146.4), C-14 (δC 145.1), C-13 (δC
114.7), and C-12 (δC 148.1) as well as from the methyl group at 2.13 (H-18) to carbons
C-12 (δC 148.1), C-13 (δC 114.7), C-14 (δC 138.9) and C-4 (δC 138.9). This led to the
hypothesis that aromatic ring A in 1 was similar to the lichen metabolite, diffractione A,9

whereas ring C was comparable to an endophytic fungus metabolite known as excelsione.10

A remarkable number of weak nJCH couplings (n>3), such as between H15/C5 (7JCH) and
H15/C4 (5JCH), were observed in the HMBC spectra of 1. These correlations were entirely
consistent with the observations made for these two related metabolites.9, 10 Therefore,
structure based on the known metabolites was elucidated as shown in Fig. 1, named as
cordycepsidone A.11

Compound 2 was isolated as a white amorphous powder, mp 205 °C. The molecular formula
of 2 was established as C18H12O9 by APCI-HR-TOFMS (m/z 373.0563 [M + H]+), 16 mass
units higher than compound 1, which suggested the addition of a single oxygen atom.
The 1H NMR spectrum was very similar to that of 1, but lacked an aldehyde proton at 10.54;
rather, it exhibited a proton signal corresponding to a carboxylic acid ( 14.17). This change
from an aldehyde at position 16 to a carboxylic acid was the only structural difference
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between the two compounds. Detailed assignments for the carbon and protons in
cordycepsidone B12 were accomplished by 2D NMR spectroscopic data and comparison
with compound 1.

All extracts13 were subjected to spectroscopic analysis to identify any new metabolites
arising from an antagonistic effect. The chemical composition of these extracts was very
similar, indicating that antagonism does not have a marked effect on the secondary
metabolite profile of F0307. In the paper disk assay, the extracts showed identical inhibition
against phytopathogen, suggesting that the antifungal metabolite production was not induced
in F0307 by the phytopathogen, but rather, is constitutively expressed. The extracts were
also tested against the parasites4 Plasmodium falciparum (malaria), Leishmania donovani
(leishmaniasis), and Trypanosoma cruzi (Chagas’disease), as well as MCF-7 cancer cell
lines4, and found to be inactive at 10 μg/mL against all. Both compounds were inactive
against several bacterial strains (Staphylococcus aureus, Escherichia coli, and Pseudomonas
aeruginosa at 50 μg/mL).

1 and 2 belong to the depsidone class of compounds, which are more commonly associated
with lichens than endophytic fungi.10, 15 It is probable that compound 2 is derived from 1 by
oxidation enzymes present in the fungal strain F0307. Compound 1 showed moderate to
good growth inhibitory activity against phytopathogens G. fujikuroi (MIC, 8.3 μg/mL) and
Pythium ultimum (MIC, 1.2 μg/mL), but was less potent (>50) against the G. fujikuroi
anamorph Fusarium subglutinans (Table 1). However, compound 2 showed a general
reduction in activity in the antifungal assays, indicating the importance of the aldehyde
functionality to the biological properties of compound 1. It is noteworthy that both new
depsidones were highly selective against fungi and not the other assay organisms tested.

Overall, the results presented here suggest that depsidone 1, produced by the endophytic
fungal strain C. diptergena, is responsible for the observed antifungal activity. Considering
the importance of pathogen control in food production, the antagonistic screen could be a
useful and cost effective method to identifying novel chemical entities as antifungal agents.
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Figure 1.
Chemical Structures of Cordycepsidone A (1) and B (2).
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Table 1

Antifungal Activity14 [MIC, μg/mL]a of 1 and 2

Compound Giberella fujikuroi Pythium ultimum

1 8.3 ± 2.7 1.2 ± 0.3

2 >50 25.0 ± 0.1

Cycloheximide 0.39 ± 0.1 0.65 ± 0.2

a
The experiments were performed in triplicate and the average values were expressed.

Tetrahedron Lett. Author manuscript; available in PMC 2013 March 28.


